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Regularity for the ∆: harmonic functions

Classical Regularity of harmonic functions

Lemma (Caccioppoli - Cimmino - Weyl)
Ω ⊂ RN , u ∈ L1

loc
(Ω) very weak solution of ∆u = 0, i.e.,∫
Ω

u∆φdx = 0 for any φ ∈ C∞
c (Ω)

=⇒ u ∈ C∞(Ω) and u is harmonic in Ω.



Regularity for the ∆: the Poisson equation

Sobolev regularity of solutions to Poisson equation

Theorem
Ω ⊂ RN , f ∈ L2(Ω), u ∈ H1(Ω) weak solution to −∆u = f in Ω, i.e.,∫

Ω

Du · Dv dx =

∫
Ω

fv dx ∀ v ∈ H1

0
(Ω)

=⇒ u ∈ H2

loc
(Ω) and for every Ω′ ⋐ Ω we have

∥u∥H2(Ω′) ≤ C (Ω,Ω′)
(
∥f ∥L2(Ω) + ∥u∥L2(Ω)

)
.



The di�erence quotients method

One proof of the regularity of solutions exploits the di�erence quotients
method introduced by L. Nirenberg. Namely, setting

Dh
i v :=

v(x + hei )− v(x)

h

for some i = 1, . . . ,N and h ∈ R \ {0} su�. small, one can prove that if
u is a weak solution of −∆u = f then if we put the function

v := −D−h
i

(
η2Dh

i u
)
, η smooth cut-o�

in the weak formulation of −∆u = f one deduces that Du ∈ H1

loc
(Ω,RN).

Rmk This method applies to second-order elliptic operators with mild
regularity assumptions on the coe�cients and also to nonlinear equations.



The fractional Laplacian

Recall that for w ∈ Cγ+2s
loc

(Ω) ∩ L1s (RN) for some γ > 0, the fractional
Laplacian (−∆)su is de�ned as

(−∆)su(x) = cN,s

∫
RN

u(x)− u(y)

|x − y |N+2s
dy ,

for every x ∈ Ω.
Here Cσ

loc
(Ω) denotes C ⌊σ⌋ functions with locally σ − ⌊σ⌋ Hölder

continuous derivatives of order ⌊σ⌋
u ∈ L1s (RN) if

∥u∥L1s (RN ) :=

∫
RN

|u(x)|
1+ |x |N+2s

dx <∞

Remark There are (at least!) ten equivalent ways to de�ne (−∆)s , see
M. Kwa±nicki 2017. We mention another one.



Ca�arelli-Silvestre extension approach (2007)

(−∆)s as a weighted Dirichlet-to Neumann operator

∆xU +
1− 2s

y
Uy + Uyy =

1

y1−2s
div(y1−2s∇x,yU) = 0 y > 0

U(x , 0) = u(x) x ∈ RN

−(−∆x)
su(x) = CN,s lim

y→0+
y1−2sUy (x , y) x ∈ RN

More general elliptic operators are considered in place of ∆x , by P.R.
Stinga and J.L. Torrea (2010) and later also parabolic by K. Nyström and
O. Sande (2016) and by P.R. Stinga and J.L. Torrea (2017).
Previous results in this circle of ideas by Muckenhoupt and Stein (1965)
in harmonic analysis, Molchanov and Ostrovskii (1969) in a probabilistic
setting.



Very weak solutions

In this talk for B1 := B1(0) and g ∈ L1s (RN) we deal with very weak
solutions of {

(−∆)su = 0 in B1

u = g in Bc
1
,

(1)

i.e., u ∈ L1s (RN) and ∫
RN

u(−∆)sφdx = 0 (2)

for every φ compactly supported in B1 such that (−∆)sφ ∈ L∞s (RN) and
u = g in Bc

1
, where

L∞s (RN) :=
{
f ∈ L∞(RN); sup

x∈RN

(1+ |x |N+2s)|f (x)| <∞
}
.



Local regularity for very weak solutions via fractional
di�erence quotients

Theorem (Carbotti, Cito, La Manna, P. 2024)
Let u be a very weak solution of (−∆)su = 0. Then

1. (Sobolev regularity) u ∈ Hs
loc

(B1) and the estimate

∥u∥Hs (B′) ≤ c(N, s,B ′) ∥u∥L1s (RN )

holds for every B ′ ⋐ B1.

2. (Classical regularity) u is real analytic in B1 and the estimate

∥Dαu∥L∞(Br0 )
≤ c |α|α!C (R, r ,N, s)

(
∥u∥L∞(BR )

+ ∥u∥L1s (RN )

)
holds for any α ∈ NN

0
and 0 < r0 < R < 1.



Available proofs of regularity

1. (−∆)s as a ΨDO (distributional solutions, R. Seeley, 1965)

2. Via fractional Poisson representation (Bogdan-Byczkowski, 1999)

u(x) =

∫
Bc
1

Ps
1
(x , y)g(y)dy , (3)

very weak solutions with g ∈ C (B1) or g ∈ L∞(B1+ϵ)

3. Via mean value property (Aimar-Beltritti-Gómez 2015)

4. Via classical di�erence quotients (Cozzi 2017): H2s−ε
loc estimates for

weak solutions

5. Via maximum principle: continuity of weak solutions
(Servadei-Valdinoci 2013)

6. Hölder regularity of weak solutions (Brasco-Lindgren-Schikorra 2018)

7. Via classical di�erence quotients for the extension problem
(Banerjee-Garofalo 2023): analyticity of weak solutions



Sketch of our proof

Let u ∈ L1s (B1) be a very weak solution of

{
(−∆)su = 0 in B1

u = g in Bc
1

.

1. Summability improvement: u ∈ L2
loc

(B1)

2. Fractional Sobolev regularity: u ∈ Hs
loc

(B1)

3. Higher order fractional Sobolev regularity: u ∈ H2s
loc

(B1)

4. Hölder regularity: u ∈ Cα
loc

(B1)

5. Improved Hölder regularity: u ∈ C
γ(α,s)
loc

(B1)

6. Analyticity



Starting point 1

Theorem (Ros Oton-Serra 2013)
Let s ∈ (0, 1), N > 2s, m > N

s , Ω ⊂ RN a bounded C 1,1 domain, and let
v be the unique solution of{

(−∆)sv = ψ in Ω

v = 0 in Ωc ,
(4)

with ψ ∈ C (Ω). Then, there exists C > 0 such that

∥v∥C s (RN ) ≤ C ∥ψ∥Lm(Ω) . (5)

Proof. Solve (−∆)sv = |ψ| in RN via Riesz potential.



Starting point 2

Theorem (Abdellaoui-Fernández-Leonori-Younes 2023)
Let N ≥ 2, s ∈ (0, 1), m ≥ 1, Ω ⊂ RN a bounded C 2 domain, and let v
be the unique solution of{

(−∆)sv = ψ in Ω,

v = 0 in Ωc .

Then
∥v∥W s,p(RN ) ≤ C ∥ψ∥Lm(Ω) (6)

where

▶ if 1 ≤ m < N
s then (6) holds with 1 < p < Nm

N−ms

▶ if m > N
s then (6) holds for every 1 < p <∞.



Carré du champ estimates (Γ-calculus)

Is(f , g) =
1

2
((−∆)s(fg)− f (−∆)sg − g(−∆)s f )

=

∫
RN

(f (·)− f (y))(g(·)− g(y))

| · −y |N+2s
dy

Let η ∈ C∞
c (B1), supp η = B1−δ

∥Is(η, ηv)∥Lp(RN ) ≤ C ∥ηv∥W s,p(RN )

∥ηIs(η, v)∥Lp(RN ) ≤ C
(
∥v∥W s,p(B1−δ)

+ ∥v∥L1s (RN )

)
,

∥Is(η, ηv)∥L∞
s (RN ) ≤ C∥ηv∥C s (B1−δ)

[ηIs(η, v)]Cγ(α,s)(RN ) ≤ C
[
∥v∥Cα(B1−δ) + ∥v∥L1s (RN )

]
Is(f , g)]Cγ(α,s)(RN ) ≤ C [f ]Cα(RN )[g ]C0,1(RN )

Remark C depend on N, s, δ, p, α.



Step 1: from L1s to Lploc, p < N
N−s

ψ ∈ C∞(B1) ∩ C (B1), Ω := B1−δ, η ∈ C∞
c (B1) supported in B1−2δ.

(−∆)sv = ψ as in (4) implies (−∆)s(η2v) ∈ L∞s , hence η2v is a suitable
test function and we have

∫
u(−∆)s(η2v) = 0, whence∣∣∣∣∫

RN

η2uψdx

∣∣∣∣ ≤∫
RN

|uIs(η, ηv)|dx + 2

∫
RN

|uvη(−∆)sη|dx

+

∫
RN

|uηIs(η, v)|dx =: A1 + A2 + A3.

A2 =

∫
RN

|uvη(−∆)sη|dx ≤C ∥u∥L1(B1−2δ)
∥v∥L∞(B1−2δ)

by (5)

≤C ∥u∥L1(B1−2δ)
∥ψ∥Lm(B) , m > N/s



Step 1: First summability improvement

∥Is(η, ηv)∥L∞
s

≤ C∥v∥C s ≤ C∥ψ∥Lm by (5)

implies A1 ≤ C∥u∥L1s (RN )∥ψ∥Lm(RN ), m > N/s.

A3 =

∫
RN

|uηIs(η, v)|dx =

∫
B1−2δ

|uηIs(η, v)|dx

≤∥u∥L1(B1−2δ)
∥Is(η, v)∥L∞(B1−2δ)

and

|Is(η, v)(x)| ≤ C ∥v∥C s (RN )

(∫
B2−3δ(x)

dy

|x − y |N+s−1
+

∫
Bc
δ(x)

dy

|x − y |N+2s

)
≤ C ∥ψ∥Lm(B)

implies A3 ≤ C∥u∥L1s (RN )∥ψ∥Lm(RN ), m > N/s.



First summability improvement: from Lploc to L2loc

We have proved that∣∣∣∣∫
RN

η2uψdx

∣∣∣∣ ≤ C (δ) ∥u∥L1s (RN ) ∥ψ∥Lm(B1)

for any m > N
s , ψ ∈ C∞(B) ∩ C (B). Therefore, by a density argument

η2u ∈ Lp(B1) and u ∈ Lp
loc

(B1) for any p < N
N−s .

Using again φ = η2v as test function in∫
RN

u(−∆)sφ dx = 0

with η, v given as before, and using the estimates provided by our
Proposition and Theorem [AFLY] in a �nite number of steps we prove
that η2u ∈ Lr (B1) for any r < N

s . In particular η2u ∈ L2(B1) and
u ∈ L2

loc
(B1) ∩ L1s (RN).



Step 2: From L1s ∩ L2loc to H s
loc(B1)

Fractional di�erence quotients:
Let δ ∈ (0, 1

4
). τ ∈ (0, 1

2
), η ∈ C∞

c (B1) with supp η = B1−2δ and
ητ : [0,∞) → [0, 1] de�ned as

ητ (t) :=


0 if 0 ≤ t ≤ τ/2,
2

τ t − 1 if τ/2 ≤ t ≤ τ ,
1 if t ≥ τ ,

For every x ∈ B1−δ we de�ne the following function

Ds
ητ ,ηu(x) :=

∫
RN

ητ (|x − y |)η(x)u(x)− η(y)u(y)

|x − y |N+2s
dy . (7)



H s
loc(B1)-regularity via fractional di�erence quotients

u ∈ Hs
loc

(B1) if ηu ∈ Hs(B1), where

[ηu]2Hs (RN ) =

∫
RN

dx

∫
RN

(η(x)u(x)− η(y)u(y))2

|x − y |N+2s
dy

= sup
0<τ≤1/2

∫
RN

dx

∫
RN

ητ (|x − y |) (η(x)u(x)− η(y)u(y))2

|x − y |N+2s
dy

= 2 sup
0<τ≤1/2

∫
RN

uηDs
ητ ,ηudx = sup

0<τ≤1/2

G s
ητ ,η (u),

therefore we are left to estimating G s
ητ ,η (u) uniformly wrto τ .

Set φ := ηv where v is the solution of the following problem{
(−∆)sv = Ds

ητ ,ηu in B1−δ

v = 0 in Bc
1−δ.

(8)



H s
loc(B1)-regularity via fractional di�erence quotients

The function φ is a suitable test function for (2) and we have

0 =

∫
RN

u(−∆)sφ dx =

∫
RN

u(−∆)s(ηv) dx

=

∫
B1−δ

uv(−∆)sη dx +

∫
B1−2δ

uη(−∆)sv dx −
∫
RN

uIs(η, v)dx ,

whence

1

2
G s
ητ ,η (u) =

∣∣∣∣∣
∫
B1−2δ

uηDs
ητ ,ηu dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B1−δ

uv(−∆)sη dx

∣∣∣∣∣+
∣∣∣∣∫

RN

uIs(η, v)dx

∣∣∣∣
=|C1|+ |C2|.



H s
loc(B1)-regularity via fractional di�erence quotients

|C1| =

∣∣∣∣∣
∫
B1−δ

uv(−∆)sη dx

∣∣∣∣∣ ≤ ∥u∥
L(2∗s )′ (B1−δ)

∥v∥L2∗s (RN )∥(−∆)sη∥L∞(RN )

≤ C (δ)[v ]Hs (RN ), by Sobolev embedding

where 2∗s = 2N
N−2s and

C2 =

∫
RN

uIs(η, v)dx =

∫
B1−δ

u(x)dx

∫
RN

(v(x)− v(y))(η(x)− η(y))

|x − y |N+2s
dy

+

∫
Bc
1−δ

u(x)dx

∫
RN

(v(x)− v(y))(η(x)− η(y))

|x − y |N+2s
dy

=C3 + C4



H s
loc(B1)-regularity via fractional di�erence quotients

|C3| ≤ C (η)∥u∥L2(B1−δ) [v ]Hs (RN )

|C4| ≤ C (δ)∥u∥L1s (RN )[v ]Hs (RN )

Finally, putting v as a test function in (8) we get

[v ]2Hs (RN ) ≤ [v ]Hs (RN )

√
G s
ητ ,η(u)

whence

[ηu]Hs (RN ) = sup
0<τ≤1/2

√
G s
ητ ,η (u) ≤ C (δ,N, s) ∥u∥L1s (RN ) .



H s
loc(B1)

Step 3−→ H2s
loc(B1)

Step 4−→ Cα
loc(B1)

u ∈ Hs
loc

(B1), η as before implies that η2u is a weak solution of
(−∆)sw = f ∈ L2(RN), hence by elliptic regularity (Grubb, 2015 and
Biccari-Warma-Zuazua, 2017) η2u ∈ H2s(RN).
Indeed, f = 2ηu(−∆)sη − Is(η, ηu)− ηIs(η, u) ∈ L2(RN) and we have
already proved that all the terms are in L2(RN).

Since u is a locally weak s-harmonic function, by fractional De Giorgi
estimates (Brasco-Lindgren-Schikorra 2018) we have that u ∈ Cα

loc
(B1)

for every α ∈ (0,min{2s, 1}).



Cα
loc(B1)

Step 5−→ C
γ(α,s)
loc (B1)

To reach a better Hölder regularity of u we exploit Hölder estimates on
Is(η, ηu) and ηIs(η, u) and the fact that η2u is a bounded weak solution
in RN to the equation (−∆)sw = f ∈ Cγα(RN). Then, by Schauder
estimates, we obtain that η2u ∈ Cγ(α,s)(RN), with γ(α, s) as below.
For any f ∈ Cα(RN) and g ∈ C 0,1(RN) we have

[Is(f , g)]Cγ(α,s)(RN ) ≤ C [f ]Cα(RN )[g ]C0,1(RN )

where γ(α, s) :=

{
2α− 2s if 0 < s ≤ 1

2

α− 2s + 1 if 1

2
< s < 1



Conclusion: C
γ(α,s)
loc (B1) → Cω(B1)

We conclude our proof by �xing 0 < r0 < r < R < 1 and using the fact
that now u is regular enough to be the classical solution of{

(−∆)sw = 0 in Br

w = h in Bc
r ,

(9)

where

h :=

{
u in B1 \ Br

g in Bc
1
.

∈ C (BR) ∩ L1s (RN)



C
γ(α,s)
loc (B1) → Cω(B1)

By uniqueness

u(x) = uh(x) :=

∫
Bc
r

Ps
r (x , y)h(y)dy , x ∈ Br ,

where

Ps
r (x , y) := CN,s

(
r2 − |x |2

|y |2 − r2

)s
1

|x − y |N
, x ∈ Br , y ∈ Bc

r .

Moreover
∥uh∥L∞(Br )

≤ C
(
∥u∥L∞(BR )

+ ∥u∥L1s (RN )

)
.

By simple estimates on Dα
x Pr (x , y) for every α ∈ NN , x ∈ Br0 and

y ∈ Bc
r we �nally prove the second inequality in our Main Theorem.


