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Regularity for the A: harmonic functions

Classical Regularity of harmonic functions

Lemma (Caccioppoli - Cimmino - Weyl)
QC RV, ue L} .(Q) very weak solution of Au =0, ie.,

/ ulApdx =0 for any ¢ € C°(Q)
Q

= u € C*(Q) and u is harmonic in Q.



Regularity for the A: the Poisson equation

Sobolev regularity of solutions to Poisson equation

Theorem
QC RN, fel?Q), uc H(Q) weak solution to —Au=f inQ, ie.,

/Du~DvdX:/fvdx Vv e H;(Q)
Q Q

= u € H2.(Q) and for every ' € Q we have

lull ey < C2.2) (IFlagey + 1l2(gy ) -



The difference quotients method

One proof of the regularity of solutions exploits the difference quotients
method introduced by L. Nirenberg. Namely, setting

D,-hv . v(x + hef,-') — v(x)

for some i=1,...,N and h € R\ {0} suff. small, one can prove that if
u is a weak solution of —Au = f then if we put the function

v:=—D;"(y?Df'u) ,n smooth cut-off

in the weak formulation of —Au = f one deduces that Du € H} _(Q,R").

Rmk This method applies to second-order elliptic operators with mild
regularity assumptions on the coefficients and also to nonlinear equations.



The fractional Laplacian

Recall that for w € G72°(Q) N LL(RM) for some ~ > 0, the fractional

loc
Laplacian (—A)®u is defined as

(A u(x) = cns / ubd —uly)

v ‘X _ y|N+2s

for every x € Q.
Here C7.(Q) denotes Cl°! functions with locally o — || Holder
continuous derivatives of order |o |

ue LY(RN)if
ulx
loll s, ;:/ S CICI|
RN

Remark There are (at least!) ten equivalent ways to define (—A)®, see
M. Kwasnicki 2017. We mention another one.



Caffarelli-Silvestre extension approach (2007)

(—A)* as a weighted Dirichlet-to Neumann operator

1-2s 1 . _os
AU+ Uy + Uy, = )ﬂdlv(yl *V,,U)=0 y>0
U(x,0) = u(x) x € RN
—(—Ax)°u(x) = Cn,s lim ylfzsz(x,y) x € RN
y—0+4+

More general elliptic operators are considered in place of A,, by P.R.
Stinga and J.L. Torrea (2010) and later also parabolic by K. Nystrém and
0. Sande (2016) and by P.R. Stinga and J.L. Torrea (2017).

Previous results in this circle of ideas by Muckenhoupt and Stein (1965)
in harmonic analysis, Molchanov and Ostrovskii (1969) in a probabilistic

setting.



Very weak solutions

In this talk for By := B;(0) and g € LL(R") we deal with very weak

solutions of
—A¥u=0 in B
Aru=0 in B (1)
u=g in By,
ie, uc L}(RN) and
/ u(—A)’pdx =0 (2)
RN

for every ¢ compactly supported in By such that (—A)S¢ € L2°(RV) and
u=gin Bf, where

LE(RY) = {f e L=(RY), (1+ xM2)|F(x)] < oo}

sup
xERN



Local regularity for very weak solutions via fractional
difference quotients

Theorem (Carbotti, Cito, La Manna, P. 2024)
Let u be a very weak solution of (—A)°u = 0. Then

1. (Sobolev regularity) u € H;, (B1) and the estimate
HUHHs(B') <c(N,s,B') ||U||Lg(RN)

holds for every B’ € B;.
2. (Classical regularity) u is real analytic in By and the estimate

||DaUHL°°(B,°) =< Cla‘a!C(R, r,N,s) (HU”Lw(BR) + ||UHL5(RN))

holds for any o € N}/ and 0 < rp < R < 1.



Available proofs of regularity

1. (—=A)® as a WDO (distributional solutions, R. Seeley, 1965)
2. Via fractional Poisson representation (Bogdan-Byczkowski, 1999)

o) = [ Pilxye()dy, 3)
1
very weak solutions with g € C(B;) or g € L(By..()
3. Via mean value property (Aimar-Beltritti-Gémez 2015)

4. Via classical difference quotients (Cozzi 2017): H7 © estimates for
weak solutions

5. Via maximum principle: continuity of weak solutions
(Servadei-Valdinoci 2013)

6. Holder regularity of weak solutions (Brasco-Lindgren-Schikorra 2018)

7. Via classical difference quotients for the extension problem
(Banerjee-Garofalo 2023): analyticity of weak solutions



Sketch of our proof

Let u € L1(B;) be a very weak solution of {

I T o N

Summability improvement: u € L2 (Bi)

Fractional Sobolev regularity: u € Hf (B1)

Higher order fractional Sobolev regularity: u € HZS.(By)
Holder regularity: u e C2.(By)

Improved Halder regularity: u € C\**)(B,)

loc

Analyticity



Starting point 1

Theorem (Ros Oton-Serra 2013)

Lets € (0,1), N>2s, m> %, Q C RN a bounded C** domain, and let
v be the unique solution of

(=Ayv=29y in Q ()
v=0 in QF
with 1) € C(Q). Then, there exists C > 0 such that
1Vl exguny < €19l oy (5)

Proof. Solve (—A)*v = || in RN via Riesz potential.



Starting point 2

Theorem (Abdellaoui-Fernandez-Leonori-Younes 2023)

Let N >2,s¢€(0,1), m>1, Qc R" a bounded C? domain, and let v

be the unique solution of
(=Ayv=1vy in Q,
v=0 in €QF°.

Then
IVllwsr@my < CllYlm e

where
> if 1< m< Y then (6) holds with 1 < p < ™

> if m> Y then (6) holds for every 1 < p < <.



Carré du champ estimates (I'-calculus)

L(F.8) = 5 (-A)(fg) — F(~A) — g(~A)F)

_ / (FC) = F))(e() — &)

- | ._y|N+2s

Let n € C°(By), suppn = Bi_s

||Is(77a77V)||Lv(RN) <C ||"7V||W5vP(RN)
s (1, Wisqamy < € (W) + V113 )
||/5(77777V)||Lg°(]R’V) < CHUVHCS(BI,J)

s, criememy < C[IVlleaienn + IVl
Is(f, )l e @mny < Clf]camnylg]cos@n)

Remark C depend on N, s, 6, p, a.



Step 1: from Ll to LP | p N’!S

€ C®(B)NC(By), Q:= By_5,n € CX(By) supported in By_»s.

(—A)*v =1 as in (4) implies (—A)*(n?v) € L, hence n?v is a suitable
test function and we have [ u(—A)%(n?v) =0, whence

/ n2uhdx
RN

fo = [ lwvn(=anlde <Clulsge, o Mlimion g by ()

<C ||U||L1(Bl,25) ||7/)||Lm(5) , m>N/s

< / July (i, v) b+ 2 / Juvn(—A)n]dx
RN RN

+/ |unls(n, v)|dx =: Ay + Az + As.
]RN



Step 1: First summability improvement

Hs(m )i < Clivlles < Cligpllm by (5)
implies A < CHUHL:(RN)”’I/)”Lm(RN), m > N/S

Ay = / Juhe(, v) o = / Jumle(r, V)] dx
RN Bi_2s
<Nulliagsy sy Hs(m V)l Lo 8y s

and

dy dy
Is(n, v)()| < C vl s / 7-1-/ ——
[ls(n, v)(x)] Ivile (RM) ( Bras () X — [N Be(x) x — y|N+2s
< Cl[Yllimpy

implies Az < CHUHL:(RN)”w”Lm(RN), m > N/S



First summability improvement: from L? to L2

loc loc

We have proved that

/ n? updx
RN

for any m > Y ) € C>(B) N C(B). Therefore, by a density argument
n?u € LP(By) and u € LY (By) for any p < .

Using again ¢ = n?v as test function in

< C0) [lull 2.y 191l Ly

/ u(=A)pdx =0
RN

with 7, v given as before, and using the estimates provided by our
Proposition and Theorem [AFLY] in a finite number of steps we prove
that n?u € L"(By) for any r < Y. In particular nu € L?(B;) and

u€ L2 (B)N LLYRN).



Step 2: From LI N L2 to H .(Bi)

Fractional difference quotients:
Let 6 € (0,3). 7 €(0,%), n € C(B1) with suppn = Bi_»s and
7, : [0,00) — [0, 1] defined as

0 if 0 <t<7/2,
2t—1 ifr/2<t<r,
1 if t >,

777(1') =

For every x € B;_;s we define the following function

o) = [ (- y) LRI g

Dy, |x — y|N+2s



H; .(Bi)-regularity via fractional difference quotients

u € Hf,.(Bi1) if nu € H*(B1), where

Wl = [, [, ORIt g,
= sup /}RN dx/ n-(Jx = y|) (n(x)u(x )y|Ng_);)sU(Y)) dy

0<7<1/2 |

=2 sup /unD;Tnudx: sup GnST.n(U)v
0<7<1/2 JRN ’ 0<r<1/2

therefore we are left to estimating G;_, (u) uniformly wrto 7.
Set ¢ := nv where v is the solution of the following problem

( A) vV = D; 17U in B]__(;
v=0 in BS .



H; .(Bi)-regularity via fractional difference quotients

ocC

The function ¢ is a suitable test function for (2) and we have
0= / u(—A)Ypdx = / u(—A)*(nv) dx
RV RN
= / uv(—A)°n dx + / un(—A)°v dx — / uls(n, v)dx,
Bi_s J By 25

RN

= / unD;_ . udx
Bi_25

/ uv(—A)*n dx
Bi_s

=G|+ ]G]

+ ‘/ uls(n, v)dx
RN




H; .(Bi)-regularity via fractional difference quotients

|G = < Null ez gy o) 1VI1 2z @y 1(=2)nll oo (v

/ uv(—A)*n dx
Bi_s
< C(0)[V]He(rry, by Sobolev embedding

* _ 2N
where 27 = =5

G :/IR’V uls(n, v)dx = / x)dx /RN |X = (|Z(+X2)S n(y)) dy
(v ( ) = v(¥))(n(x) = n(x))
" /Bfg e /]R |x — y|Nt2e i

=G+ G

and




H; .(Bi)-regularity via fractional difference quotients

|G| < Cllulliz(By_s) [V]Hs(mmy
|Cal < C(O)lull 2 mmy[v]ms@my

Finally, putting v as a test function in (8) we get
[v]HS &M < [V]Hs (RV) Gﬁﬁn(u)
whence

[nU]HS(RN) = sup Gﬁ n( u) < C(6, N7S)HUHL51(]RN)'

0<7<1/2



Step 3 Step 4

Hloc(Bl) Hloc(Bl)

loc(Bl)

u € H (B1), n as before implies that 7?u is a weak solution of
(—A)’w = f € [2(RN), hence by elliptic regularity (Grubb, 2015 and
Biccari-Warma-Zuazua, 2017) n?u € H?*$(RN).

Indeed, f = 2nu(—A)*n — Is(n, nu) — nls(n, u) € L>(RN) and we have
already proved that all the terms are in L2(R").

Since u is a locally weak s-harmonic function, by fractional De Giorgi
estimates (Brasco-Lindgren-Schikorra 2018) we have that v € C¢.(B1)
for every a € (0, min{2s,1}).



Step 5

c(e 5)( B)

loc

10((81)

To reach a better Holder regularity of u we exploit Holder estimates on
Is(n, nu) and nls(n, u) and the fact that n?u is a bounded weak solution
in R to the equation (—A)*w = f € C¥(R"). Then, by Schauder
estimates, we obtain that n?u € CY(@*)(RV), with v(a, s) as below.
For any f € C*(R") and g € C%1(RN) we have

[s(f. &)l croammy < Clf]co@mglcor@n

20—2s if 0<s<1
a—2s+1 if 1<s<1

where v(a, s) := {



Conclusion: C/\“9)(B,) — C*(By)

C

We conclude our proof by fixing 0 < ry < r < R < 1 and using the fact
that now u is regular enough to be the classical solution of

{(A)SW:O in B, ©)

w=h in Bf,

where

in B\ B, _
hi= {“ in B\ € C(Bgr) N LL(RM)
g in Bf.



CL)(By) — C¥(By)

loc

By uniqueness

where

r2 _ |X|2
ly[? —r?

S
1
P (x,y) = C/v,s( ) |X7y|N,x€B,7y€Bf.

Moreover
lenlliesy) < € (Il gy + lellagemy) -

By simple estimates on D P,(x, y) for every a € NN, x € B, and
y € Bf we finally prove the second inequality in our Main Theorem.



