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Introduction

Let µ be a measure on Rd and tStutą0 a semigroup of operators
such that t ÞÑ St f is continuous µ-almost everywhere for any
measurable function f .

To study pointwise convergence, for instance the existence of
limtÑ0` St f pxq, we usually follow a two step procedure:

1. Establish a weak type inequality:

µ
´

␣

x : sup
tą0

|St f pxq| ą α
(

¯

Àp
}f }

p
p

αp
,

(which ensures that the space Lp of Lp-functions for which the
limit limtÑ0` f exists µ-almost everywhere is closed in Lppµq).

2. Determine a class S Ă Lp of functions which is dense in Lppµq.
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Variation seminorm
We will discuss a couple of tools which allows us to handle
pointwise convergence more quantitatively.

Let 1 ď ϱ ă 8. For any function ϕ defined on R` “ p0,`8q the
variation seminorm }ϕ}vpϱq is defined by

}ϕ}vpϱq :“ sup

˜

N
ÿ

i“1

|ϕpti q ´ ϕpti´1q|ϱ

¸1{ϱ

,

where the supremum is taken over all finite, increasing sequences
ttiu

N
0 in R`. This is a seminorm and vanishes only on constant

functions.
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Given a function f P LppRdq and a point x P Rd , define

ϕf ,xptq “ St f pxq, t ą 0,

and apply to ϕf ,x the above definition, obtaining a function
mapping x to

}S‚f pxq}vpϱq “ sup

˜

N
ÿ

i“1

|Sti f pxq ´ Sti´1f pxq|ϱ

¸1{ϱ

,

where the supremum is taken over all finite increasing sequences
ttiu

N
0 Ă R`.
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An important property of the function x ÞÑ }S‚f pxq}vpϱq is that if
for some x we have }S‚f pxq}vpϱq ă 8, then the limit
limtÑ0` St f pxq exists (this observation was popularised by J.
Bourgain).

For this reason we look for variational inequalities, that is weak (or
strong) type inequalities for f ÞÑ }S‚f p¨q}vpϱq,

µ
´

␣

x : }S‚f pxq}vpϱq ą α
(

¯

Àp
}f }

p
p

αp
.

From now on, St will be the Ornstein-Uhlenbeck semigroup.
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The Ornstein–Uhlenbeck semigroup
This is the semigroup

`

Ht

˘

tą0 generated by the elliptic operator

L “
1
2
tr
`

Q∇2˘ ` xBx ,∇y,

called the Ornstein-Uhlenbeck operator. Here ∇ is the gradient and
∇2 the Hessian matrix. Moreover,

‚ Q is a real, symmetric and positive definite d ˆ d matrix,
called the covariance of L;

‚ B is a real d ˆ d matrix whose eigenvalues have negative real
parts.

Ht is defined as the semigroup generated by L,

Ht “ etL, t ą 0.
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For each t ą 0, Ht is an integral operator. It is well known that
there exists a measure γ8 which is invariant under the action of
Ht , that is

ż

Rd

Ht f pxqdγ8pxq “

ż

Rd

f pxqdγ8pxq for all f and t ą 0.

This measure, which is unique up to a positive factor, is given by

dγ8pxq “ p2πq´ d
2 pdetQ8q´ 1

2 exp

ˆ

´
1
2

xQ´1
8 x , xy

˙

dx ,

where Q8 is the positive matrix given by

Q8 “

ż 8

0
esBQesB

˚

ds.
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Then, for each f P L1pγ8q and all t ą 0 one has

Ht f pxq “

ż

Ktpx , uqf puqdγ8puq, x P Rd ,

where

Ktpx , uq “

ˆ

detQ8

detQt

˙1{2

exQ´1
8 x ,xy{2

ˆ exp
”

´
1
2
@`

Q´1
t ´ Q´1

8

˘

pu ´ Dtxq, u ´ Dtx
D

ı

is the Mehler kernel. Here
‚ Qt “

şt
0 e

sBQesB
˚

ds, 0 ă t ď 8;

‚ Dt “ Q8e´tB˚

Q´1
8 .
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The Ornstein–Uhlenbeck operator L and the Ornstein–Uhlenbeck
semigroup Ht play the role of the Laplacian and of the heat
semigroup in Rd if the Lebesgue measure dx is replaced by dγ8.

In general, the semigroup Ht is not self-adjoint, (not even normal),
and to study its properties we cannot rely on the spectral theorem.
Since, for each t ą 0, Ht is an integral operator, our analysis is
instead based on the properties of the Mehler kernel.
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Recently, V. Almeida, J. J. Betancor, J. C. Farina, P. Quijano and
L. Rodriguez-Mesa in Littlewood–Paley functions associated with
general Ornstein–Uhlenbeck semigroups, proved the following result:

Theorem: For each ϱ ą 2 and 1 ă p ă 8, the operator mapping
f P Lppγ8q to

}H‚f pxq}vpϱq, x P Rd ,

where the vpϱq seminorm is taken in the variable t, is bounded
from Lppγ8q to Lppγ8q.

A bit of history: In fact, in 2001 R. L. Jones and K. Reinhold proved
that for ϱ ą 2 the variation operator of any symmetric diffusion
semigroup is bounded on Lp for 1 ă p ă 8. Ten years later C. Le
Merdy and Q. Xu extended this result to a non-symmetric context.
Almeida et al. applied the latter result in the Gaussian,
non-symmetric framework, that we are discussing.
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We completed the picture proving the endpoint result:

Theorem
For each ϱ ą 2 the operator that maps f P L1pγ8q to the function

Rd Q x ÞÑ }H‚f pxq}vpϱq

is of weak type p1, 1q with respect to the measure γ8.
For 1 ď ϱ ď 2 the assertion is false.
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We have to prove the inequality

γ8

`

tx P Rd : }H‚f pxq}vpϱq,R`
ą αu

˘

À
}f }L1pγ8q

α

for all α ą 0 and all f P L1pγ8q.
We first proved it for d “ 1 with a method which seems hard to
adapt to the case d ą 1 (Ann. Mat. Pura Appl. (2024)).
Then recently, with a different method, we proved this estimate
also for d ą 1 (to appear in J. Geom. Anal.)).
Anyway, in order to avoid some technicalities, we shall present the
recent proof (that holding for all d ě 1) in the one dimensional
case.
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If d “ 1 the semigroup is given by

Ht f pxq “

ż 8

´8

Ktpx , uq f puq dγ8puq, t ą 0,

where f P L1pγ8q, Kt is the Mehler kernel

Ktpx , uq “
ex

2{2
?

1 ´ e´2t
exp

ˆ

´
1
2

pe´tu ´ xq2

1 ´ e´2t

˙

, px , uq P R ˆ R,

and dγ8puq “ p2πq´1{2 expp´u2{2qdu.
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Let ϱ ą 2. The proof of

γ8

`

tx P R : }H‚f pxq}vpϱq

˘

ą αu À
1
α

}f }L1pγ8q,

is divided into several steps. First of all we distinguish between
small and large t.

The reason to distinguish between small and large times is due to
the different behaviour of the Mehler kernel in these two cases.

In addition, when t is small we shall need another (spatial)
distinction, between local and global regions. We start discussing
the case t ě 1.
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The case of large t
The easiest case is the variation of Ht f pxq for 1 ď t ă 8.

Proposition
For each ϱ ě 1 the operator that maps f P L1pγ8q to the function

}H‚f pxq}vpϱq,r1,`8q, x P R,

is of weak type p1, 1q with respect to the measure γ8. In fact, one
has the following stronger result:

γ8

`␣

x P R : }H‚f pxq}vpϱq,r1,8q ą α
(˘

À
1

α
?
logα

}f }L1pγ8q, α ą 2.

This estimate, which is enhanced by a logarithmic factor, is
optimal. An analogous phenomenon was already observed both for
the Ornstein–Uhlenbeck maximal operator and for the Gaussian
Riesz transform.
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Proof:

Remark: If ϕ P C 1pI q and ϕ1 P L1pI q, then }ϕ}vpϱq,I ă 8; in fact,

}ϕ}vpϱq,I ď

ż

I
| 9ϕptq|dt.

Hence,

}H‚f pxq}vpϱq,r1,8q ď

ż 8

1
|BtHt f pxq| dt

ď

ż 8

1

ˇ

ˇ

ˇ

ˇ

Bt

ż 8

´8

Ktpx , uqf puqdγ8puq

ˇ

ˇ

ˇ

ˇ

dt

ď

ż 8

´8

ˆ
ż 8

1

ˇ

ˇ 9Ktpx , uq
ˇ

ˇ dt

˙

|f puq|dγ8puq.
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We are thus reduced to bound the integral
ż 8

1

ˇ

ˇ 9Ktpx , uq
ˇ

ˇ dt.

From the expression of the Mehler kernel

Ktpx , uq “
ex

2{2
?

1 ´ e´2t
exp

ˆ

´
1
2

pe´tu ´ xq2

1 ´ e´2t

˙

, px , uq P R ˆ R,

it is easy to deduce
ż 8

1

ˇ

ˇ 9Ktpx , uq
ˇ

ˇ dt À ex
2{2.
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The last bound implies

}H‚f pxq}vpϱq,r1,8q ď

ż

R

ˆ
ż 8

1

ˇ

ˇ 9Ktpx , uq
ˇ

ˇdt

˙

|f puq|dγ8puq À ex
2{2}f }1.

Since
γ8

´

␣

x : ex
2{2 ą α

(

¯

À
1

α
?
logα

, α ą 2,

we get

γ8

`␣

x P R : }H‚f pxq}vpϱq,r1,8q ą α
(˘

À
1

α
?
logα

}f }L1pγ8q, α ą 2,

which yields the result.
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The estimate

γ8

´

␣

x P R : e |x |2{2 ą α
(

¯

À
1

α
?
logα

, α ą 2,

is not true for d ą 1. To prove the claimed bound we need to
introduce a suitable system of polar coordinates adapted to the
problem.
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The case of small t

The study of the variation in (0, 1] is more delicate and requires a
further distinction between local and global parts of the
Ornstein-Uhlenbeck semigroup operator.
To do that we first split R2 into a local and a global region. This
decomposition was introduced for d “ 1 by B. Muckenhoupt in the
70’s and for Rd ˆ Rd with d ą 1 by P. Sjögren in the 80’s.
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The local region is the region where |x ´ u| À 1{p1 ` |x |q The
point of this definition is that in the local region the density of the
measure γ8 has the same order of magnitude at x and u.

The local part of the semigroup is then defined by

Hloc
t f pxq “

ż

f puqKtpx , uqη
`

p1 ` |x |q|x ´ u|
˘

dγ8puq,

where η is a smooth nonnegative function on R` which is 1 in
p0, 1{2s and 0 in r1,8q.
The global part Hglob

t “ Ht ´ Hloc
t is given by a similar

expression, with ηp.q replaced by 1 ´ ηp¨q.
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The global case for small t

The operator is

Hglob
t f pxq “

ż

Ktpx , uq

´

1 ´ ηpp1 ` |x |q|x ´ u|q

¯

f puqdγ8puq.

Its kernel is supported where |x ´ u| Á 1{p1 ` |x |q.

Proposition
For each ϱ ě 1 the operator that maps f P L1pγ8q to the function
x ÞÑ }Hglob

‚ f pxq}vpϱq,p0,1s satisfies

γ8

`␣

x P R : }Hglob
‚ f pxq}vpϱq,p0,1s ą α

(˘

À
1
α

}f }L1pγ8q, α ą 2.
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Sketch of the proof:

As before we have

}Hglob
‚ f pxq}vpϱq,p0,1s ď

ż 1

0

ˇ

ˇ

ˇ
BtHglob

t f pxq

ˇ

ˇ

ˇ
dt

“

ż 1

0

ˇ

ˇ

ˇ

ˇ

Bt

ż 8

´8

Ktpx , uqp1 ´ ηqf puqdγ8puq

ˇ

ˇ

ˇ

ˇ

dt

“

ż 1

0

ˇ

ˇ

ˇ

ˇ

ż 8

´8

9Ktpx , uqp1 ´ ηqf puqdγ8puq

ˇ

ˇ

ˇ

ˇ

dt

ď

ż 8

´8

ˆ
ż 1

0

ˇ

ˇ 9Ktpx , uq
ˇ

ˇdt

˙

p1 ´ ηq|f puq|dγ8puq.
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It is easy to see that 9Ktpx , uq has at most four zeros in p0, 1q.
Denote them by t1, . . . , tN´1 (N and ti may depend on px , uq and
N ď 5). Set also t0 “ 0 and tN “ 1. Then

ż 1

0
| 9Ktpx , uq| dt “

Npx ,uq
ÿ

1

ż ti px ,uq

ti´1px ,uq

| 9Ktpx , uq|dt

“

Npx ,uq
ÿ

1

ˇ

ˇ

ˇ

ˇ

ˇ

ż ti px ,uq

ti´1px ,uq

9Ktpx , uq dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď 10 sup
p0,1s

Ktpx , uq.

Hence,

}Hglob
‚ f pxq}vpϱq,p0,1s ď

ż 8

´8

ż 1

0

ˇ

ˇ 9Ktpx , uq
ˇ

ˇ dt p1 ´ ηq|f puq| dγ8puq

ď 10
ż 8

´8

sup
p0,1s

Ktpx , uq
`

1 ´ ηpp1 ` |x |q|x ´ u|qq
˘

|f puq| dγ8puq.
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We claim that for all px , uq

sup
p0,1s

Ktpx , uq

´

1 ´ ηpp1 ` |x |q|x ´ u|q

¯

À ex
2{2 p1 ` |x |q.

This yields

}Hglob
‚ f pxq}vpϱq,p0,1s À ex

2{2 p1 ` |x |q

ż 8

´8

|f puq| dγ8puq,

which implies the result, because

γ8

´!

x : ex
2{2 p1 ` |x |q ą α

)¯

À
1
α
, α ą 0.
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Again, for d ą 1 the estimate

γ8

´!

x : ex
2{2 p1 ` |x |q ą α

)¯

À
1
α
, α ą 0.

is no longer true.
When d ą 1, we again use that in the global region 9Ktpx , uq has a
bounded number N, say, of zeros in p0, 1s, obtaining

}Hglob
t f pxq}vpϱq,p0,1s

ď 2N
ż

Rd

sup
tPp0,1s

Ktpx , uq
`

1 ´ ηpx , uq
˘

|f puq| dγ8puq,

and then that the maximal operator (with sup inside the integral)

Mf pxq “

ż

sup
tPp0,1s

Ktpx , uq
`

1 ´ ηpx , uq
˘

|f puq|dγ8puq

is of weak type p1, 1q with respect to γ8.
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The local case for small t

The operator is

Hloc
t f pxq “

ż

f puqKtpx , uq ηpp1 ` |x |q|x ´ u|q dγ8puq,

living where
|x ´ u| ď 1{p1 ` |x |q.

Theorem
For each ϱ ą 2 the operator mapping f P L1pγ8q to

x ÞÑ }Hloc
‚ f pxq}vpϱq,p0,1s,

is of weak type p1, 1q with respect to γ8.
Here ϱ ą 2, in fact the estimate is false for ϱ ď 2.
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Splitting the line in local intervals

In this case Hloc
t f pxq depends only on the restriction of f to the

interval tu : |u ´ x | ď 1{p1 ` |x |qu. We thus split the line into
intervals of similar type, choosing an increasing sequence txju

8
0

with x0 “ 0 and

xj`1 ´
1

1 ` xj`1
“ xj `

1
1 ` xj

for j “ 1, . . . (xj « 2
?
j ´ 1) and setting xj “ ´x|j | for j ă 0.

Defininig

Ij “

„

xj ´
1

1 ` |xj |
, xj `

1
1 ` |xj |

ȷ

,

we get the decompositions: R “
Ť

jPZ Ij .
When d ą 1, we have an analogous decomposition with the
intervals replaced by rings.
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Claim: If

supp f Ă Ij “

„

xj ´
1

1 ` |xj |
, xj `

1
1 ` |xj |

ȷ

,

then

suppHloc
t f Ă rIj “

„

xj ´
4

1 ` |xj |
, xj `

4
1 ` |xj |

ȷ

, j P Z.

Since the intervals rIj have the bounded overlapping property we

may therefore assume that supp f Ă Ij .
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In each rIj the density of γ8 is essentially constant,

e´x2{2 « e´x2
j {2 for x P rIj ,

and the implicit constants are uniform in j . We can therefore
replace on each interval γ8 with the Lebesgue measure and apply
vector-valued Calderón–Zygmund theory to prove that for each
ϱ ą 2 the operator mapping a function f P L1pγ8q supported in Ij
to

x ÞÑ }Hloc
‚ f pxq}vpϱq,p0,1s,

is of weak type p1, 1q.
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We call Θ the set of finite strictly increasing sequences
ε “ pε1, ¨ ¨ ¨ , εNpεqq in p0, 1s and F the space of functions on ΘˆN.
Then we introduce the subspace Fϱ of functions g for which

}g}Fϱ :“ sup
εPΘ

¨

˝

Npεq
ÿ

j“0

ˇ

ˇgpε, jq
ˇ

ˇ

ϱ

˛

‚

1{ϱ

ă 8,

this is a norm and Fϱ is a Banach space.
Given a function f on R, we define Vf : R Ñ F by

`

Vf pε, jq
˘

pxq “ Hloc
εj
f pxq ´ Hloc

εj´1
f pxq, j “ 1, . . . ,Npεq.

Then
}Hloc

‚ f pxq}vpϱq,p0,1s “ }
`

Vf p¨, ¨q
˘

pxq}Fϱ .
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Instead of proving that the operator mapping f P L1pγ8q to

x ÞÑ }Hloc
‚ f pxq}vpϱq,p0,1s

is of weak type p1, 1q with respect to γ8, we can prove:

Theorem
For each ϱ ą 2 the operator that maps f P L1pγ8q to

x ÞÑ }Vf pxq}Fϱ , x P R,

is of weak type p1, 1q with respect to γ8.
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To apply Calderón–Zygmund theory we have to pass to the
Lebesgue measure, hence, we define

rVgpxq “ e´x2{2V
`

gp¨qex
2{2˘pxq.

If the operator that maps g P L1pduq to

x ÞÑ

›

›

›

rVgpxq

›

›

›

Fϱ

, x P R,

is of weak type p1, 1q with respect to the Lebesgue measure

ó

The operator that maps f P L1pγ8q to

x ÞÑ }Vf pxq}Fϱ , x P R,

is of weak type p1, 1q with respect to γ8.
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To prove that rV is of weak type p1, 1q we express it as an integral
operator

rVgpxq “

ż

R
rMpx , uqgpuqdu,

where rMpx , uq P F . For x R suppg this is a Bochner integral in Fϱ
and rVgpxq P Fϱ.

Since the variation operator for Hloc
t is bounded on L2pγ8q for

ϱ ą 2 (Le Merdy-Xu), the operator

g ÞÑ
›

› rVgp¨q
›

›

Fϱ

is bounded on L2pdxq.
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It suffices therefore to show that rM is a standard kernel:

(a)

} rMpx , uq}Fϱ À
1

|x ´ u|
, x ‰ u,

(b) if moreover |x ´ u| ą 2|u ´ u1|, then

} rMpx , uq ´ rMpx , u1q}Fϱ À
|u ´ u1|

|x ´ u|2
.

From these bounds and the boundedness of g ÞÑ
›

› rVgp¨q
›

›

Fϱ
on

L2pdxq we finally obtain the required weak type p1, 1q estimate,
concluding the proof.
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