P. Ciatti (joint work with V. Casarino and P. Sjögren)

Università degli Studi di Padova

Università degli Studi di Modena e Reggio Emilia 9 Settembre 2025

Introduction

Let μ be a measure on \mathbb{R}^d and $\{S_t\}_{t>0}$ a semigroup of operators such that $t \mapsto S_t f$ is continuous μ -almost everywhere for any measurable function f.

To study pointwise convergence, for instance the existence of $\lim_{t\to 0+} S_t f(x)$, we usually follow a two step procedure:

1. Establish a weak type inequality:

$$\mu\Big(\big\{x: \sup_{t>0} |S_t f(x)| > \alpha\big\}\Big) \lesssim_p \frac{\|f\|_p^p}{\alpha^p},$$

(which ensures that the space \mathcal{L}^p of L^p -functions for which the limit $\lim_{t\to 0+} f$ exists μ -almost everywhere is closed in $L^p(\mu)$.

2. Determine a class $S \subset \mathcal{L}^p$ of functions which is dense in $L^p(\mu)$.

We will discuss a couple of tools which allows us to handle pointwise convergence more quantitatively.

Let $1\leqslant \varrho<\infty$. For any function ϕ defined on $\mathbb{R}_+=(0,+\infty)$ the variation seminorm $\|\phi\|_{\mathbf{v}(\varrho)}$ is defined by

$$\|\phi\|_{\mathbf{v}(\varrho)} := \sup\left(\sum_{i=1}^{N} |\phi(t_i) - \phi(t_{i-1})|^{\varrho}\right)^{1/\varrho},$$

where the supremum is taken over all finite, increasing sequences $\{t_i\}_0^N$ in \mathbb{R}_+ . This is a seminorm and vanishes only on constant functions.

$$\phi_{f,x}(t) = S_t f(x), \qquad t > 0,$$

and apply to $\phi_{f,x}$ the above definition, obtaining a function mapping x to

$$||S_{\bullet}f(x)||_{v(\varrho)} = \sup \left(\sum_{i=1}^{N} |S_{t_i}f(x) - S_{t_{i-1}}f(x)|^{\varrho}\right)^{1/\varrho},$$

where the supremum is taken over all finite increasing sequences $\{t_i\}_{0}^{N} \subset \mathbb{R}_+$.

For this reason we look for variational inequalities, that is weak (or strong) type inequalities for $f \mapsto ||S_{\bullet}f(\cdot)||_{V(\rho)}$,

$$\mu\Big(\big\{x:\|S_{\bullet}f(x)\|_{\nu(\varrho)}>\alpha\big\}\Big)\lesssim_{p}\frac{\|f\|_{p}^{p}}{\alpha^{p}}.$$

From now on, S_t will be the Ornstein-Uhlenbeck semigroup.

This is the semigroup $(\mathcal{H}_t)_{t>0}$ generated by the elliptic operator

$$\mathcal{L} = \frac{1}{2} \mathrm{tr} (Q \nabla^2) + \langle B x, \nabla \rangle,$$

called the Ornstein-Uhlenbeck operator. Here ∇ is the gradient and ∇^2 the Hessian matrix. Moreover,

- Q is a real, symmetric and positive definite $d \times d$ matrix, called the covariance of \mathcal{L} ;
- B is a real d × d matrix whose eigenvalues have negative real parts.

 \mathcal{H}_t is defined as the semigroup generated by \mathcal{L} ,

$$\mathcal{H}_t = e^{t\mathcal{L}}, \quad t > 0.$$

$$\int_{\mathbb{R}^d} \mathcal{H}_t f(x) d\gamma_\infty(x) = \int_{\mathbb{R}^d} f(x) d\gamma_\infty(x) \quad \text{for all f and $t>0$}.$$

This measure, which is unique up to a positive factor, is given by

$$d\gamma_{\infty}(x) = (2\pi)^{-rac{d}{2}} (\det Q_{\infty})^{-rac{1}{2}} \exp\left(-rac{1}{2}\langle Q_{\infty}^{-1}x,x
angle
ight) \ dx,$$

where Q_{∞} is the positive matrix given by

$$Q_{\infty} = \int_{0}^{\infty} e^{sB} Q e^{sB^*} ds.$$

Then, for each $f \in L^1(\gamma_\infty)$ and all t > 0 one has

$$\mathcal{H}_t f(x) = \int K_t(x, u) f(u) d\gamma_{\infty}(u), \quad x \in \mathbb{R}^d,$$

where

$$\begin{split} \mathcal{K}_t(x,u) &= \left(\frac{\det Q_{\infty}}{\det Q_t}\right)^{1/2} e^{\left\langle Q_{\infty}^{-1}x,x\right\rangle/2} \\ &\times \exp\left[-\frac{1}{2}\left\langle \left(Q_t^{-1}-Q_{\infty}^{-1}\right)(u-D_tx),u-D_tx\right\rangle \right] \end{split}$$

is the Mehler kernel. Here

•
$$Q_t = \int_0^t e^{sB} Q e^{sB^*} ds$$
, $0 < t \le \infty$;

•
$$D_t = Q_{\infty}e^{-tB^*}Q_{\infty}^{-1}$$
.

The Ornstein–Uhlenbeck operator \mathcal{L} and the Ornstein–Uhlenbeck semigroup \mathcal{H}_t play the role of the Laplacian and of the heat semigroup in \mathbb{R}^d if the Lebesgue measure dx is replaced by $d\gamma_{\infty}$.

In general, the semigroup \mathcal{H}_t is not self-adjoint, (not even normal), and to study its properties we cannot rely on the spectral theorem. Since, for each t>0, \mathcal{H}_t is an integral operator, our analysis is instead based on the properties of the Mehler kernel.

Recently, V. Almeida, J. J. Betancor, J. C. Farina, P. Quijano and L. Rodriguez-Mesa in *Littlewood–Paley functions associated with general Ornstein–Uhlenbeck semigroups*, proved the following result:

Theorem: For each $\varrho > 2$ and $1 , the operator mapping <math>f \in L^p(\gamma_\infty)$ to

$$\|\mathcal{H}_{\bullet}f(x)\|_{\nu(\varrho)}, \quad x \in \mathbb{R}^d,$$

where the $v(\varrho)$ seminorm is taken in the variable t, is bounded from $L^p(\gamma_\infty)$ to $L^p(\gamma_\infty)$.

A bit of history: In fact, in 2001 R. L. Jones and K. Reinhold proved that for $\varrho > 2$ the variation operator of any symmetric diffusion semigroup is bounded on L^p for 1 . Ten years later C. Le Merdy and Q. Xu extended this result to a non-symmetric context. Almeida et al. applied the latter result in the Gaussian, non-symmetric framework, that we are discussing.

We completed the picture proving the endpoint result:

Theorem

For each $\varrho>2$ the operator that maps $f\in L^1(\gamma_\infty)$ to the function

The problem

$$\mathbb{R}^d\ni x\mapsto \|\mathcal{H}_{\bullet}f(x)\|_{v(\varrho)}$$

is of weak type (1,1) with respect to the measure $\gamma_{\infty}.$ For $1\leqslant \varrho\leqslant 2$ the assertion is false.

$$\gamma_{\infty} \left(\left\{ x \in \mathbb{R}^d : \| \mathcal{H}_{\bullet} f(x) \|_{\nu(\varrho), \mathbb{R}_+} > \alpha \right\} \right) \lesssim \frac{\| f \|_{L^1(\gamma_{\infty})}}{\alpha}$$

The problem

for all $\alpha > 0$ and all $f \in L^1(\gamma_\infty)$.

We first proved it for d=1 with a method which seems hard to adapt to the case d>1 (Ann. Mat. Pura Appl. (2024)).

Then recently, with a different method, we proved this estimate also for d>1 (to appear in J. Geom. Anal.)).

Anyway, in order to avoid some technicalities, we shall present the recent proof (that holding for all $d \ge 1$) in the one dimensional case.

$$\mathcal{H}_t f(x) = \int_{-\infty}^{\infty} K_t(x, u) f(u) d\gamma_{\infty}(u), \quad t > 0,$$

The problem

where $f \in L^1(\gamma_\infty)$, K_t is the Mehler kernel

$$K_t(x, u) = \frac{e^{x^2/2}}{\sqrt{1 - e^{-2t}}} \exp\left(-\frac{1}{2} \frac{(e^{-t}u - x)^2}{1 - e^{-2t}}\right), \quad (x, u) \in \mathbb{R} \times \mathbb{R},$$

and
$$d\gamma_{\infty}(u) = (2\pi)^{-1/2} \exp(-u^2/2) du$$
.

$$\gamma_{\infty}(\{x \in \mathbb{R} : \|\mathcal{H}_{\bullet}f(x)\|_{\nu(\varrho)}) > \alpha\} \lesssim \frac{1}{\alpha} \|f\|_{L^{1}(\gamma_{\infty})},$$

is divided into several steps. First of all we distinguish between small and large t.

The problem

The reason to distinguish between small and large times is due to the different behaviour of the Mehler kernel in these two cases.

In addition, when t is small we shall need another (spatial) distinction, between local and global regions. We start discussing the case $t \ge 1$.

The case of large t

The easiest case is the variation of $\mathcal{H}_t f(x)$ for $1 \leq t < \infty$.

Proposition

For each $\varrho \geqslant 1$ the operator that maps $f \in L^1(\gamma_\infty)$ to the function

$$\|\mathcal{H}_{\bullet}f(x)\|_{v(\varrho),[1,+\infty)}, \quad x \in \mathbb{R},$$

is of weak type (1,1) with respect to the measure γ_{∞} . In fact, one has the following stronger result:

$$\gamma_{\infty}\left(\left\{x \in \mathbb{R} : \|\mathcal{H}_{\bullet}f(x)\|_{\nu(\varrho),[1,\infty)} > \alpha\right\}\right) \lesssim \frac{1}{\alpha\sqrt{\log \alpha}} \|f\|_{L^{1}(\gamma_{\infty})}, \quad \alpha > 2.$$

This estimate, which is enhanced by a logarithmic factor, is optimal. An analogous phenomenon was already observed both for the Ornstein–Uhlenbeck maximal operator and for the Gaussian Riesz transform.

Proof:

Remark: If $\phi \in C^1(I)$ and $\phi' \in L^1(I)$, then $\|\phi\|_{V(\rho),I} < \infty$; in fact,

$$\|\phi\|_{\nu(\varrho),I} \leqslant \int_{I} |\dot{\phi}(t)| dt.$$

Hence.

$$\begin{split} \|\mathcal{H}_{\bullet}f(x)\|_{\nu(\varrho),[1,\infty)} & \leq \int_{1}^{\infty} |\partial_{t}\mathcal{H}_{t}f(x)| \, dt \\ & \leq \int_{1}^{\infty} \left| \partial_{t} \int_{-\infty}^{\infty} K_{t}(x,u)f(u)d\gamma_{\infty}(u) \right| \, dt \\ & \leq \int_{-\infty}^{\infty} \left(\int_{1}^{\infty} \left| \dot{K}_{t}(x,u) \right| \, dt \right) |f(u)| d\gamma_{\infty}(u). \end{split}$$

$$\int_1^\infty \left| \dot{K}_t(x,u) \right| dt.$$

From the expression of the Mehler kernel

$$K_t(x, u) = \frac{e^{x^2/2}}{\sqrt{1 - e^{-2t}}} \exp\left(-\frac{1}{2} \frac{(e^{-t}u - x)^2}{1 - e^{-2t}}\right) , (x, u) \in \mathbb{R} \times \mathbb{R},$$

it is easy to deduce

$$\int_{1}^{\infty} \left| \dot{K}_{t}(x, u) \right| dt \lesssim e^{x^{2}/2}.$$

$$\|\mathcal{H}_{\bullet}f(x)\|_{v(\varrho),[1,\infty)} \leqslant \int_{\mathbb{D}} \left(\int_{1}^{\infty} \left| \dot{K}_{t}(x,u) \right| dt \right) |f(u)| d\gamma_{\infty}(u) \lesssim e^{x^{2}/2} \|f\|_{1}.$$

Since

$$\gamma_{\infty}\Big(\big\{x:e^{x^2/2}>\alpha\big\}\Big)\lesssim \frac{1}{\alpha\sqrt{\log \alpha}},\quad \alpha>2,$$

we get

$$\gamma_{\infty}\left(\left\{x \in \mathbb{R} : \|\mathcal{H}_{\bullet}f(x)\|_{\nu(\varrho),[1,\infty)} > \alpha\right\}\right) \lesssim \frac{1}{\alpha\sqrt{\log \alpha}} \|f\|_{L^{1}(\gamma_{\infty})}, \quad \alpha > 2,$$

which yields the result.

The estimate

$$\gamma_{\infty}\Big(\big\{x\in\mathbb{R}:e^{|x|^2/2}>\alpha\big\}\Big)\lesssim \frac{1}{\alpha\sqrt{\log\alpha}},\quad \alpha>2,$$

is not true for d > 1. To prove the claimed bound we need to introduce a suitable system of polar coordinates adapted to the problem.

The case of small t

The study of the variation in (0, 1] is more delicate and requires a further distinction between local and global parts of the Ornstein-Uhlenbeck semigroup operator.

To do that we first split \mathbb{R}^2 into a local and a global region. This decomposition was introduced for d = 1 by B. Muckenhoupt in the 70's and for $\mathbb{R}^d \times \mathbb{R}^d$ with d > 1 by P. Sjögren in the 80's.

The **local part** of the semigroup is then defined by

$$\mathcal{H}_t^{\mathrm{loc}} f(x) = \int f(u) K_t(x, u) \eta \big((1 + |x|) |x - u| \big) d\gamma_{\infty}(u),$$

where η is a smooth nonnegative function on \mathbb{R}_+ which is 1 in (0, 1/2] and 0 in $[1, \infty)$.

The global part $\mathcal{H}_t^{\text{glob}} = \mathcal{H}_t - \mathcal{H}_t^{\text{loc}}$ is given by a similar expression, with $\eta(.)$ replaced by $1 - \eta(.)$.

The global case for small t

The operator is

$$\mathcal{H}_t^{\text{glob}} f(x) = \int K_t(x, u) \left(1 - \eta((1 + |x|)|x - u|) \right) f(u) d\gamma_{\infty}(u).$$

Its kernel is supported where $|x - u| \gtrsim 1/(1 + |x|)$.

Proposition

For each $\varrho \geqslant 1$ the operator that maps $f \in L^1(\gamma_\infty)$ to the function $x \mapsto \|\mathcal{H}^{\mathrm{glob}}_{\bullet} f(x)\|_{\nu(\varrho),(0,1]}$ satisfies

$$\gamma_{\infty}\left(\left\{x\in\mathbb{R}:\|\mathcal{H}^{\mathrm{glob}}_{\bullet}f(x)\|_{\nu(\varrho),(0,1]}>\alpha\right\}\right)\lesssim\frac{1}{\alpha}\|f\|_{L^{1}(\gamma_{\infty})},\quad\alpha>2.$$

As before we have

$$\begin{split} \|\mathcal{H}^{\mathrm{glob}}_{\bullet}f(x)\|_{\nu(\varrho),(0,1]} & \leq \int_{0}^{1} \left| \partial_{t}\mathcal{H}^{\mathrm{glob}}_{t}f(x) \right| dt \\ & = \int_{0}^{1} \left| \partial_{t} \int_{-\infty}^{\infty} K_{t}(x,u)(1-\eta)f(u)d\gamma_{\infty}(u) \right| dt \\ & = \int_{0}^{1} \left| \int_{-\infty}^{\infty} \dot{K}_{t}(x,u)(1-\eta)f(u)d\gamma_{\infty}(u) \right| dt \\ & \leq \int_{-\infty}^{\infty} \left(\int_{0}^{1} \left| \dot{K}_{t}(x,u) \right| dt \right) (1-\eta)|f(u)|d\gamma_{\infty}(u). \end{split}$$

Proof for small t

It is easy to see that $K_t(x, u)$ has at most four zeros in (0, 1). Denote them by t_1, \ldots, t_{N-1} (N and t_i may depend on (x, u) and $N \leq 5$). Set also $t_0 = 0$ and $t_N = 1$. Then

$$\int_{0}^{1} |\dot{K}_{t}(x,u)| dt = \sum_{1}^{N(x,u)} \int_{t_{i-1}(x,u)}^{t_{i}(x,u)} |\dot{K}_{t}(x,u)| dt$$

$$= \sum_{1}^{N(x,u)} \left| \int_{t_{i-1}(x,u)}^{t_{i}(x,u)} \dot{K}_{t}(x,u) dt \right| \leq 10 \sup_{(0,1]} K_{t}(x,u).$$

Hence,

$$\begin{split} &\|\mathcal{H}^{\mathrm{glob}}_{\bullet}f(x)\|_{\nu(\varrho),(0,1]} \leqslant \int_{-\infty}^{\infty} \int_{0}^{1} \left|\dot{K}_{t}(x,u)\right| dt \, (1-\eta)|f(u)| \, d\gamma_{\infty}(u) \\ &\leqslant 10 \int_{-\infty}^{\infty} \sup_{(0,1]} K_{t}(x,u) \, \big(1-\eta((1+|x|)|x-u|))\big) |f(u)| \, d\gamma_{\infty}(u). \end{split}$$

We claim that for all (x, u)

$$\sup_{(0,1]} \mathcal{K}_t(x,u) \left(1 - \eta((1+|x|)|x-u|) \right) \lesssim e^{x^2/2} \left(1 + |x| \right).$$

This yields

$$\|\mathcal{H}^{\mathrm{glob}}_{\bullet}f(x)\|_{v(\varrho),(0,1]} \lesssim e^{x^2/2} \left(1+|x|\right) \int_{-\infty}^{\infty} |f(u)| \, d\gamma_{\infty}(u),$$

which implies the result, because

$$\gamma_{\infty}\left(\left\{x: e^{x^2/2}\left(1+|x|\right)>\alpha\right\}\right)\lesssim \frac{1}{\alpha}, \quad \alpha>0.$$

$$\gamma_{\infty}\left(\left\{x:e^{x^2/2}\left(1+|x|\right)>\alpha\right\}\right)\lesssim \frac{1}{\alpha},\quad \alpha>0.$$

is no longer true.

When d > 1, we again use that in the global region $\dot{K}_t(x, u)$ has a bounded number N, say, of zeros in (0, 1], obtaining

$$\|\mathcal{H}_t^{\text{glob}}f(x)\|_{\nu(\varrho),(0,1]} \le 2N \int_{\mathbb{R}^d} \sup_{t\in(0,1]} K_t(x,u) \left(1 - \eta(x,u)\right) |f(u)| \, d\gamma_{\infty}(u),$$

and then that the maximal operator (with sup inside the integral)

$$Mf(x) = \int \sup_{t \in [0,1]} K_t(x,u) (1 - \eta(x,u)) |f(u)| d\gamma_{\infty}(u)$$

is of weak type (1,1) with respect to γ_{∞} .

Proof for small t

The local case for small t

The operator is

$$\mathcal{H}_t^{\mathrm{loc}} f(x) = \int f(u) \, K_t(x,u) \, \eta((1+|x|)|x-u|) \, d\gamma_{\infty}(u),$$

living where

$$|x-u|\leqslant 1/(1+|x|).$$

Theorem

For each $\rho > 2$ the operator mapping $f \in L^1(\gamma_{\infty})$ to

$$x \mapsto \|\mathcal{H}^{\mathrm{loc}}_{\bullet} f(x)\|_{v(\rho),(0,1]},$$

is of weak type (1,1) with respect to γ_{∞} .

Here $\rho > 2$, in fact the estimate is false for $\rho \leq 2$.

In this case $\mathcal{H}_{t}^{loc}f(x)$ depends only on the restriction of f to the interval $\{u: |u-x| \le 1/(1+|x|)\}$. We thus split the line into intervals of similar type, choosing an increasing sequence $\{x_i\}_{0}^{\infty}$ with $x_0 = 0$ and

$$x_{j+1} - \frac{1}{1 + x_{j+1}} = x_j + \frac{1}{1 + x_j}$$

for j = 1, ... $(x_i \approx 2\sqrt{j} - 1)$ and setting $x_i = -x_{|j|}$ for j < 0. Defining

$$\mathbb{I}_{j} = \left[x_{j} - \frac{1}{1 + |x_{j}|}, x_{j} + \frac{1}{1 + |x_{j}|} \right],$$

we get the decompositions: $\mathbb{R} = \bigcup_{i \in \mathbb{Z}} \mathbb{I}_i$.

When d > 1, we have an analogous decomposition with the intervals replaced by rings.

$$\operatorname{supp} f \subset \mathbb{I}_j = \left[x_j - \frac{1}{1 + |x_i|}, \ x_j + \frac{1}{1 + |x_i|} \right],$$

then

$$\operatorname{supp} \mathcal{H}_t^{\operatorname{loc}} f \subset \widetilde{\mathbb{I}}_j = \left[x_j - \frac{4}{1 + |x_j|}, \ x_j + \frac{4}{1 + |x_j|} \right], \qquad j \in \mathbb{Z}.$$

Since the intervals \tilde{I}_i have the bounded overlapping property we may therefore assume that supp $f \subset \mathbb{I}_i$.

Proof for large t

Proof for small t

In each $\widetilde{\mathbb{I}}_i$ the density of γ_{∞} is essentially constant,

$$e^{-x^2/2} \approx e^{-x_j^2/2}$$
 for $x \in \widetilde{\mathbb{I}_j}$,

and the implicit constants are uniform in j. We can therefore replace on each interval γ_{∞} with the Lebesgue measure and apply vector-valued Calderón-Zygmund theory to prove that for each $\rho > 2$ the operator mapping a function $f \in L^1(\gamma_\infty)$ supported in \mathbb{I}_i to

$$x \mapsto \|\mathcal{H}^{\mathrm{loc}}_{\bullet}f(x)\|_{\nu(\varrho),(0,1]},$$

is of weak type (1,1).

Proof for small t

We call Θ the set of finite strictly increasing sequences $\underline{\varepsilon} = (\varepsilon_1, \cdots, \varepsilon_{N(\varepsilon)})$ in (0,1] and F the space of functions on $\Theta \times \mathbb{N}$. Then we introduce the subspace F_{ρ} of functions g for which

$$\|g\|_{F_{\varrho}} := \sup_{\underline{\varepsilon} \in \Theta} \left(\sum_{j=0}^{N(\underline{\varepsilon})} |g(\underline{\varepsilon}, j)|^{\varrho} \right)^{1/\varrho} < \infty,$$

this is a norm and F_{ρ} is a Banach space. Given a function f on \mathbb{R} , we define $Vf : \mathbb{R} \to F$ by

$$(Vf(\underline{\varepsilon},j))(x) = \mathcal{H}_{\varepsilon_j}^{\mathsf{loc}}f(x) - \mathcal{H}_{\varepsilon_{j-1}}^{\mathsf{loc}}f(x), \quad j = 1, \ldots, N(\underline{\varepsilon}).$$

Then

$$\|\mathcal{H}^{\mathsf{loc}}_{\bullet}f(x)\|_{V(\rho),(0,1]} = \|\big(Vf(\cdot,\cdot)\big)(x)\|_{F_{\rho}}.$$

$$x \mapsto \|\mathcal{H}^{\mathrm{loc}}_{\bullet}f(x)\|_{\nu(\varrho),(0,1]}$$

is of weak type (1,1) with respect to γ_{∞} , we can prove:

Theorem

For each $\rho > 2$ the operator that maps $f \in L^1(\gamma_{\infty})$ to

$$x \mapsto \|Vf(x)\|_{F_\varrho}, \quad x \in \mathbb{R},$$

is of weak type (1,1) with respect to γ_{∞} .

To apply Calderón–Zygmund theory we have to pass to the Lebesgue measure, hence, we define

$$\widetilde{V}g(x) = e^{-x^2/2}V(g(\cdot)e^{x^2/2})(x).$$

If the operator that maps $g \in L^1(du)$ to

$$x \mapsto \|\widetilde{V}g(x)\|_{F_0}, \quad x \in \mathbb{R},$$

is of weak type (1,1) with respect to the Lebesgue measure

The operator that maps $f \in L^1(\gamma_{\infty})$ to

$$x \mapsto \|Vf(x)\|_{F_o}, \quad x \in \mathbb{R},$$

is of weak type (1,1) with respect to γ_{∞} .

To prove that \widetilde{V} is of weak type (1,1) we express it as an integral operator

$$\widetilde{V}g(x) = \int_{\mathbb{R}} \widetilde{M}(x, u)g(u)du,$$

where $\widetilde{M}(x,u) \in F$. For $x \notin \text{supp} g$ this is a Bochner integral in F_{ρ} and $\widetilde{V}g(x) \in F_o$.

Since the variation operator for \mathcal{H}_t^{loc} is bounded on $L^2(\gamma_{\infty})$ for $\rho > 2$ (Le Merdy-Xu), the operator

$$g \mapsto \|\widetilde{V}g(\cdot)\|_{F_\varrho}$$

is bounded on $L^2(dx)$.

(a)

$$\|\widetilde{M}(x,u)\|_{F_{\varrho}} \lesssim \frac{1}{|x-u|}, \quad x \neq u,$$

(b) if moreover |x - u| > 2|u - u'|, then

$$\|\widetilde{M}(x,u)-\widetilde{M}(x,u')\|_{F_{\varrho}}\lesssim \frac{|u-u'|}{|x-u|^2}.$$

From these bounds and the boundedness of $g \mapsto \|Vg(\cdot)\|_{F_{\bullet}}$ on $L^2(dx)$ we finally obtain the required weak type (1,1) estimate, concluding the proof.