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Introduction

Let 1 be a measure on R? and {S;};~0 a semigroup of operators
such that t — S;f is continuous p-almost everywhere for any
measurable function f.

To study pointwise convergence, for instance the existence of
lim¢—0+ Stf(x), we usually follow a two step procedure:

1. Establish a weak type inequality:
u({x s sup |Sef (x)] > a}) <p W,
t>0 aP

(which ensures that the space LP of LP-functions for which the
limit lim;_,+ f exists u-almost everywhere is closed in LP(u)).

2. Determine a class S < LP of functions which is dense in LP(u).
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Variation seminorm
We will discuss a couple of tools which allows us to handle
pointwise convergence more quantitatively.

Let 1 < p < o0. For any function ¢ defined on Ry = (0, +00) the

variation seminorm @] (,) is defined by

1/e
H(bHv(g .= sup Z W) tl (ti—1)|g ;

i=1

where the supremum is taken over all finite, increasing sequences
{t,-}év in R4. This is a seminorm and vanishes only on constant
functions.
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Given a function f € LP(RY) and a point x € R?, define
of x(t) = Stf(x), t>0,

and apply to ¢r , the above definition, obtaining a function
mapping x to

N /e
|\5-f(X)Hv(g) = sup (Z |5tif<x) - Stilf(x)‘g> )
i=1

where the supremum is taken over all finite increasing sequences
N
{t,‘}o c R+.
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An important property of the function x — [[S.f(x)],(,) is that if
for some x we have [[S.f (x)l|,(,) < o0, then the limit

lim:—o0+ Stf(x) exists (this observation was popularised by J.
Bourgain).

For this reason we look for variational inequalities, that is weak (or
strong) type inequalities for f +— [Sef(:)[|, (o),

If1Ip
aP -’

a1 £y > a}) <

From now on, S; will be the Ornstein-Uhlenbeck semigroup.
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The Ornstein—Uhlenbeck semigroup

This is the semigroup (#:),_, generated by the elliptic operator

L= %tr(QV2) +(Bx,V),

called the Ornstein-Uhlenbeck operator. Here V is the gradient and
V2 the Hessian matrix. Moreover,

e @ is a real, symmetric and positive definite d x d matrix,
called the covariance of £;

e Bis areal d x d matrix whose eigenvalues have negative real
parts.

H: is defined as the semigroup generated by £,

He = etﬁ, t > 0.
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For each t > 0, H; is an integral operator. It is well known that
there exists a measure 7., which is invariant under the action of
H;, that is

Hef (x)dVoo(x) :J f(x)dye(x) forall fand t > 0.

Rd Rd

This measure, which is unique up to a positive factor, is given by
_d _1 1 1
dyoo(x) = (2m) "2 (det Qy) ™ 2 exp —§<QOO x,xy | dx,
where Qy is the positive matrix given by

© *
Qyp = J B Qe*B" ds.
0
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Then, for each f € L*(vy) and all t > 0 one has

Hef(x) = fKt(x, u)f(u)dye(u), xE€ RY,

where

det Qo \ % ,o- o
Ki(x, u) = (det(;:) e{ Qe x)/2

X exp [—% <(Qt_1 — QO_OI) (u— Dix),u— Dtx>]

is the Mehler kernel. Here
° Q ={ eFQetds, 0<t<w
° Dt Q eftB*Q 1
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The Ornstein—-Uhlenbeck operator £ and the Ornstein—Uhlenbeck
semigroup H; play the role of the Laplacian and of the heat
semigroup in R? if the Lebesgue measure dx is replaced by dvy.

In general, the semigroup H; is not self-adjoint, (not even normal),
and to study its properties we cannot rely on the spectral theorem.
Since, for each t > 0, H; is an integral operator, our analysis is
instead based on the properties of the Mehler kernel.
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Recently, V. Almeida, J. J. Betancor, J. C. Farina, P. Quijano and
L. Rodriguez-Mesa in Littlewood—Paley functions associated with
general Ornstein—Uhlenbeck semigroups, proved the following result:

Theorem: For each o > 2 and 1 < p < o0, the operator mapping
felP(vy) to
HHOf(X)Hv(g)7 X € Rd7

where the v(g) seminorm is taken in the variable t, is bounded
from LP(7yq) to LP (7).

A bit of history: In fact, in 2001 R. L. Jones and K. Reinhold proved
that for o > 2 the variation operator of any symmetric diffusion
semigroup is bounded on LP for 1 < p < oo0. Ten years later C. Le
Merdy and Q. Xu extended this result to a non-symmetric context.
Almeida et al. applied the latter result in the Gaussian,
non-symmetric framework, that we are discussing.
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We completed the picture proving the endpoint result:

[ Theorem
For each o > 2 the operator that maps f € L(vy,) to the function

Rd X = H%0f<X)Hv(g)

is of weak type (1, 1) with respect to the measure 7.
For 1 < p < 2 the assertion is false.
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We have to prove the inequality
L] FEYES!

(X e R [Hof (v s > 0})  —

for all @ > 0 and all f e [1(7y).

We first proved it for d = 1 with a method which seems hard to
adapt to the case d > 1 (Ann. Mat. Pura Appl. (2024)).

Then recently, with a different method, we proved this estimate
also for d > 1 (to appear in J. Geom. Anal.)).

Anyway, in order to avoid some technicalities, we shall present the
recent proof (that holding for all d > 1) in the one dimensional
case.
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If d =1 the semigroup is given by
0
Hef (x) = f Ke(x, u) F(u) dy(u), £ 0,

—0Q0

where f € L}(7y), K; is the Mehler kernel

e’/ 1 (e tu—x)?
Kt(X, u)zﬁexp <_2]_—e_2t>7 (X, U)ERXR,

and dvyeo (1) = (2m) " Y2 exp(—u?/2)du.
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0000

Let o > 2. The proof of
wo({x eR [ Hof ()]v(g) >} < HfHLl(%C
is divided into several steps. First of all we distinguish between

small and large t.

The reason to distinguish between small and large times is due to
the different behaviour of the Mehler kernel in these two cases.

In addition, when t is small we shall need another (spatial)
distinction, between local and global regions. We start discussing
the case t > 1.
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The case of large t
The easiest case is the variation of H:f(x) for 1 < t < 0.

Proposition
For each o > 1 the operator that maps f € L*(v,) to the function

IHeF () v(o),11,400), X ER,

is of weak type (1,1) with respect to the measure 7. In fact, one
has the following stronger result:

o ({x e Rt [Hof (x v (o),[1,00) >a}) < a > 2.

1
\/@HfHLl('ymﬁ

This estimate, which is enhanced by a logarithmic factor, is
optimal. An analogous phenomenon was already observed both for
the Ornstein—Uhlenbeck maximal operator and for the Gaussian

Riesz transform.
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Proof:

Remark: If ¢ € C'(/) and ¢' € L}(1), then @], (o), < o0; in fact,

18]i0ys < j, b(8)]dt.

Hence,

o0
[Hof (0o 1) < f QML F(x)] dt

<[ fw () (1)
<J U \Ktxuydt) )| dn (1.

dt
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We are thus reduced to bound the integral

w .
J |Ke(x, u)| dt.
1

From the expression of the Mehler kernel

2
ex’/2 1(e7tu—x)?
Kt(X, u)zl_ie_%exp <_2]_—e_2t> ,(X, U)ERXR,

it is easy to deduce

o )
J |Ke(x, u)| dt < € 2,
1
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The last bound implies

w .
e a0 < ( [ e u)!dt) ()| dyeo) < €2 f]1.

Since )
. X3/
%O<{X € ~ a}) S ar/log o’

a> 2,
we get
a > 2,

1
Yoo ({x € R [Hof (v 10) > @}) S WWHU(%),

which yields the result.
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The estimate

1

fyoo({x eR: e‘xw2 > a}) < -

, Q> 2
Vl0og a
is not true for d > 1. To prove the claimed bound we need to
problem.

introduce a suitable system of polar coordinates adapted to the

Dae
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The case of small t

The study of the variation in (0, 1] is more delicate and requires a
further distinction between local and global parts of the
Ornstein-Uhlenbeck semigroup operator.

To do that we first split R? into a local and a global region. This
decomposition was introduced for d = 1 by B. Muckenhoupt in the
70’s and for RY x R with d > 1 by P. Sjogren in the 80's.
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The local region is the region where [x — u| < 1/(1+ |x|) The
point of this definition is that in the local region the density of the
measure Yo has the same order of magnitude at x and w.

The local part of the semigroup is then defined by

HIoo (x) = f F(u)Ke(x, 0 (L + [x])x — u]) oo (),

where 7 is a smooth nonnegative function on R, which is 1 in
(0,1/2] and 0 in [1, o0).

The global part 15" = 7, — {1 is given by a similar
expression, with 7(.) replaced by 1 — 7(-).
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The global case for small t

The operator is

HEDE () JKt(X7 ) (1_n((1+ Ix|)|x — u\))f(u)d%o(u).

Its kernel is supported where |x — u| 2 1/(1 + |x]|).

Proposition

For each o > 1 the operator that maps f € L' () to the function
o [HEF (x )v(o).(01] satisfies

o ({x € R = [HEPFO) 011 > @) € HFlisry @>2
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Sketch of the proof:

As before we have

A

~

IHE £ (%) (o), 01]

B

o0

OB f(x)‘ e
B fo
JOOOO Ke(x, u) (1 = ) f (u)dyoo (u)

(Jol |Ke(x, u)\dt) (1 — )| F ()| dyoo ().

Ki(x, u)(1 —n)f(u)dyeo(u)| dt

dt
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It is easy to see that K;(x, u) has at most four zeros in (0, 1).
Denote them by ti,...,ty—1 (N and t; may depend on (x, u) and
N < 5). Set also to = 0 and ty = 1. Then

ti(x,u)
J|Ktxu|dt— ZJ Ko, u)|dt
ti_ 1 X, u
N(x,u) ti(x,u)
= f Ki(x, u) dt| < 10 sup K¢(x, u).
1 t;_l(x,u) (0,1]

Hence,
lob 0 1 X
[HEPF (). 0.1] < j fo IKe(x, 0)| dt (1 — )| ()] dryeo (1)
—00

<10 foo sup Ke(x, u) (1 —n((1 + [x])Ix — ul))) £ (u)] dyeo (u).-
—o0 (0,1]
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We claim that for all (x, u)

sup Ke(x, u) (1= (1 + |x])|x = u])) < &2 (1 + |x|).

(0.1]
This yields
0
IHEPF () u(o).0.1] < € /2(1+|X|)f | ()] dyeo (u),
)
which implies the result, because
1
Yoo ({x L 2 (1+|x]) > a}) < o> 0.
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Again, for d > 1 the estimate

1
—, a>0.
Q@

Yoo ({X L 2 (1+ |x]) > a}) <

is no longer true. .
When d > 1, we again use that in the global region K;(x, u) has a
bounded number N, say, of zeros in (0, 1], obtaining

IHE £ (5) v (01,011

< 2NJ sup Ki(x,u) (1 —n(x, u))\f(u)] dyeo(u),
R te(0,1]

and then that the maximal operator (with sup inside the integral)

Mf (x) = f sup Ki(x, u)(l —n(x, u))\f(u)]d’yoo(u)
te(0,1]

is of weak type (1,1) with respect to 7o. e
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The local case for small t

The operator is

HEoF (x) = ff(U) Ke (%, ) n((1 + [x[)[x = u]) dyoo(u),

living where
|x —ul < 1/(1+ |x]).

Theorem
For each o > 2 the operator mapping f € [ (y) to

x = [ HEF(3) | v(o),0.1]-

is of weak type (1,1) with respect to Yo,.
Here o > 2, in fact the estimate is false for p < 2.
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Splitting the line in local intervals

In this case H1°°f (x) depends only on the restriction of f to the
interval {u: |u—x| <1/(1+|x|)}. We thus split the line into

intervals of similar type, choosing an increasing sequence {x;}¢’

with xp = 0 and

1 n 1
= x;
1+Xj+1 J ].+XJ

Xj+1 —
for j=1,... (xj ~ 24/j — 1) and setting x; = —x;| for j < 0.
Defininig
I ! + !
J— X-—i, X PR )
L S R R

we get the decompositions: R = UjeZ I;.
When d > 1, we have an analogous decomposition with the
intervals replaced by rings.
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Claim: If

fcl ! + !
su clj=|x — , X ,
PP / O T P R %

then

4 4

o
R e [ - s

], jeZ.

Since the intervals ]INJ have the bounded overlapping property we

may therefore assume that supp f < ;.
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0000

In each ]INJ the density of 7, is essentially constant,

x2/2

2 —x? ~
X2 e for x e I,

e
and the implicit constants are uniform in j. We can therefore
replace on each interval v with the Lebesgue measure and apply
vector-valued Calderén—Zygmund theory to prove that for each
0 > 2 the operator mapping a function f € L!(7) supported in I;
to

x = [HLF () (o), 015

is of weak type (1,1).
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We call © the set of finite strictly increasing sequences
€ =(e1, -+ ,en(e)) in (0,1] and F the space of functions on © x N.
Then we introduce the subspace F, of functions g for which

N(e) 1/e
lelr, = sup dileeH | <,
EE J -0

this is a norm and F, is a Banach space.
Given a function f on R, we define Vf : R — F by

(VF()) (x) = HEF(x) = HES F(x), j = 1,.... N(2).

Then
IHEF () vy 001 = | (VFC, ) ()],
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Instead of proving that the operator mapping f € () to
x = [HEF () (o), 0.1]

is of weak type (1,1) with respect to 7y, we can prove:

Theorem
For each ¢ > 2 the operator that maps f € L'(y) to

xo [VEX) X e R,

is of weak type (1,1) with respect to .
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To apply Calder6n—Zygmund theory we have to pass to the
Lebesgue measure, hence, we define

Vg(x) = e X2V (g()e¥/?) (x).

If the operator that maps g € L1(du) to

x € R,

X H Vg(x)

F,’

is of weak type (1, 1) with respect to the Lebesgue measure

\ J

U

4 )

The operator that maps f € L1(74) to

x = |Vf(x)|f,, x€R,

is of weak type (1, 1) with respect to 7q.

\ J
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To prove that V is of weak type (1,1) we express it as an integral
operator

Vg(x) = f W(x, u)g(u)d,

where I\7I(x7 u) € F. For x ¢ suppg this is a Bochner integral in F,
and Vg(x) € F,.

Since the variation operator for \°¢ is bounded on L2(7y) for
0 > 2 (Le Merdy-Xu), the operator

g~ [VeO)lp,

is bounded on L?(dx).
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It suffices therefore to show that M is a standard kernel:

(a)

~ 1
IM(x, u)|F, < =’ X # U,
(b) if moreover |x — u| > 2|u — '|, then
/
Y Y / IU<— u‘
[M(x, u) = M(x, u)[F, < X2’

From these bounds and the boundedness of g — | \7g()HF on
e

L?(dx) we finally obtain the required weak type (1,1) estimate,
concluding the proof.
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